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Analysis of Closed Arbitrary Dielectric

Waveguides Using a Modified
Rayleigh–Ritz Technique

Brian young, Member, IEEE

Abstract —To avoid the meshing difficulties of the finite-element
method, the classical Rayleigh-Ritz method is combined with an addi-

tional optimization to analyze closed arbitrary dielect~ waveguides.
The method is easily implemented in compact code and M user-friendly.
The paper develops the method and its rationale and presents numerical

examples to demonstrate its accuracy in propagation constant and
nonperturbational loss calculations. In addition, the method is shown to
be rapidly convergent and extremely stable.

I. INTRODUCTION ~

v ARIATIONAL expressions are known to provide a
powerful basis for the solution of bounda~ value prob-

Iems. The publication of Bet-k’s variatiorial formulas [1] and
expositions on the theory by Collin [2] and Barrington [3] led
to considerable interest in variational methods for the solu-
tion of electromagnetic boundary value problems. Early ap-
plications centered on the ability of the variational method,
through the Rayleigh-Ritz technique, to provide approxi-
mate closed-form solutions for the propagation constants of
inhomogeneously loaded rectangular waveguide [4], [5]. Simi-
lar applications receive continuing interest [6], [7].

The widespread availability of computers allowed numeri-
cal computation to supersede approximate analysis. The
trends in variational analysis were to either increase the
number of terms in the approximate analysis to converge it
to the exact answer or to replace the entire-domain basis
functions with an assembly of subdomain functions. The first
trend, following the classical Rayleigh-Ritz technique, uses
the computer to alleviate the analytical difficulty associated
with increasing the number of basis functions. The second
trend, generally implemented as a finite-element method,
attacks the problem in a fundamentally computer-oriented
approach. Both methods are theoretically capable of an
exact solution. The question of which to use hinges on the
relative advantages of speed, accuracy, generality, and com-
plexity of use.

A proper implementation of the finite-element method
can achieve excellent generality, high accuracy, and
spurious-free solutions. However, the mesh of subdomain
basis functions is critical to the method’s success: the number
of functions must be minimized to keep computation times
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reasonable while not sacrificing accuracy. In practice, a
graded mesh is required, with finer meshing where field
values change rapidly. In simple implementations, the user
supplies the mesh details, forcing the user to be well versed
in both the method and in electromagnetic theory to antici-
pate the field configuration. Sophisticated implementations
avoid user input through automatic and adaptive mesh gen-
eration. Mesh generation techniques are difficult subjects
that dramatically complicate the original simplicity of the
underlying variational analysis as well as the actual computer
impIementation.

With its base in entire-domain basis functions, the
Rayleigh–Ritz technique requires no mesh and so’ avoids
both detailed user involvement and complicated implementa-
tions. With the same variational foundation as the finite-ele-
ment method, a Rayleigh-Ritz method provides similar
power in a relatively simple and user-friendly format. Rela-
tive to the finite-element method, few full-wave waveguide
studies have been based on the Rayleigh-Ritz technique.
Those that have appeared incorporate approximations [8],
lack generality [9]-[12], or report poor performance [11]-[14].

This paper presents the first full-scale implementation of
the Rayleigh–Ritz technique applied to a general full-wave
frequency-dependent wave-guiding problem. The goal is to
provide an analysis tool that is general, powerful, and easily
and compactly implemented and that requires little input or
expertise on the part of the user. The specific application is
to closed arbitrary dielectric waveguides. The technique is
shown to be fast and accurate while avoiding the numerical
difficulties and approximations previously observed in
Rayleigh-Ritz techniques. Section II covers the theory of the
method, Section 111 discusses some implementation details,
while Section IV presents numerical examples to prove the
accuracy of the method. The paper concludes in Section V.

II. THEORY

A suitable variational expression for the calculation of the
propagation constant of a waveguide is given by [15]
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fig. 1. Inhomogeneous rectangular waveguide with subregions.

where

E+=~+(x, y)e-jPz =(kf+uZEz)e-18’

H+=ti+(x, y)e-jpz =(ti, +uZfiZ)e-JPz

j~z = ~ – ~z~z)eJPz~-=i-(x, y)e ( t

H“= fi-(x,y)ej~z= (- A, + uzfiz)ej~z

This mixed-field formula requires only that n x J$ = Oon the

contour of the waveguide, a requirement that the waveguide
cross section, S, be bound by a perfect electric conductor

(PEC). Since this work is concerned with circuit applications
rather than radiation, a closed structure is seen as closely
fitting the physical reality of packaging. The formula remains
stationary for the lossy case, for which j~ is replaced by
y = a + j~. The structure is defined through inhomogeneous
6 and p, both of which can be complex to include loss.

The structure to which (1) is applied is shown in Fig. 1.
Essentially an inhomogeneous rectangular waveguide (IRW),
the structure consists of a rectangular PEC box subdivided
into an arbitrary number of rectangular subregions. Each
subregion is allowed a unique isotropic permittivity and
conductivity. All subregions are assumed to have the perme-
ability of free space. Note that the subregions can be placed
arbitrarily as long as the entire cross section of the IRW is
covered without overlaps. Structures with rectangular geom-
etry, covering most cases of interest, can be precisely mod-
eled. Curved and, angled surfaces and graded permittivities
can be modeled through staircase approximations, so fibers
and novel structures can be accommodated. Considerable
numerical advantage results from this system, as will be
discussed below.

Suitable basis functions must be chosen for insertion into
(l). The goal of this work is to minimize the effort ,of the user
at this point. The modes of the homogeneous rectangular
waveguide (HRW) of the same outer dimensions as the IRW
are used as the basis functions. Note that the HRW modes
form a complete set. This selection essentially expands the
fields of the IRW in Fourier series. Any user with a back-
ground including Fourier series can easily grasp the basic

operation of the method, freeing the user from the need of
an extensive electromagnetic background. For example, dou-
bling the width of the box will require doubling the number
of basis functions to retain the same harmonic content, and
hence accuracy, of the solution.

The standard E= /Hz formulation for the HRW modes is
used [16]. This choice does not lead to spurious solutions, as
it does in the finite-element method, because the HRW
modes are electrodynamics basis functions, meaning V. H = O
is explicitly satisfied throughout S. Substituting the HRW
modes into (1) yields

B = ( ~ ~E@,s(~I~.,, + Iz~.,. + z~~.,,)
mn m

(+ Z E ‘mnHpq 14mnpq + ‘5mnpq )
mn pq

(+ E ~ Hpqfftu %pqtu + 17pqtu + Ispqtu ))
pq tu

/(
2 Z ‘L( 19mnmn + IIOmnmn )

mn

+ x H;q( ~13pqpq + L4pqpq)) (2)
Pq

where Emn are the amplitudes of EZ for the TM Z modes and
Hpq are the amplitudes of Hz for the TE2 modes. In the
summations, mn and rs sum over TM z modes, and pq and
tu sum over all TEZ modes. The integral definitions appear
in the Appendix.

Note that (2) applies to the general boxed IRW: the actual
structure is completely defined by the integrals, which for
this work are evaluated for the Fig. 1 layout. The numerical
advantage of using HRW modes as bases along with rectan-
gular subregions is that all of the integrals appearing in (2)
are available in closed form. Closed-form integration pro-
vides for speed and for the precision required for numerical
stability. In addition, numerical stability is enhanced since
the individual HRW modes can be computed to high preci-
sion since no eigenvalue equations are involved.

To convert (2) into a matrix form suitable for computer
solution, the Rayleigh-Ritz method is applied. Requiring
d~ /dEmn = O V mn yields

‘ ~E~.(Zl~.ij + Zlijn. + Z,n.j + lZij~n + z~tn.j + z~,j~.)
mn

+ ~ Hpq( 141jPq + z51Jpq)
Pq

= 4BELJ ( ~91jil + ‘1OUIJ ) V~=mn (3)

and requiring 3P /dHpq = O V pq yields

ZEmn(z4mnij + 15mnij)

mn

+ Z ‘pq( 16pqij + 16LJpq + 17Pqij + l?lJPq + 18pq1j + 18ijpq )

Pq

= l~HzJ ( z13,JiJ + z,41jtj) v ~= pq. (4)

This fully dense equation is in the form of the standard
eigenvalue equation. The eigenvalues are the complex propa-
gation constants of the dominant and higher order modes of
the IRW, and the eigenvectors are the TM’ and TEZ expan-



YOUNG ANALYSIS OF CLOSED ARBITRARY DIELECTRIC WAVEGUIDES 433

sion coefficients, which can be used to construct the IRW
fields. Numerical stability is enhanced with formulation as a
standard eigenvalue equation since standard routines of high
stability are available.

The material filling the HRW affects the HRW mode field
structures through its permittivity, •~, which directly multi-
plies the HX and HY field components but not the others.
Therefore, the value of CRdirectly affects the relative weights
of the components. A poor selection of •~ will provide a
poor fit to the correct field structure, yielding an inaccurate
value for B. However, owing to the variational nature of the
method, it is possible to optimize ~~ to achieve d~ /dc~ = O,
as was similarly done in (3) and (4). This optimization is
comparable to impedance matching the HRW to the IRW.

Since (2) is nonlinear in ~~, it is not possible to lump the
optimization with (3) and (4). A complex root search is
necessary to find the proper value of CR such that @/&~ =
O. Fortunately, the derivative can be computed analytically
and is numerically available in closed form, so numerical
stability is not compromised. For space considerations, the
derivative is not shown, but it is straightforward to derive.
An extremely important consequence of the variational na-
ture of the problem is that only one root is possible, so even
though this method requires a complex root search, there is
no uncertainty associated with it. When a root is found, it is
the correct and only root.

The solution process then takes the following steps. After
defining the structure to solve and the number of HRW
modes to use, an initial guess for .s~ is made, perhaps
automatically, and the eigenvalue problem (3) and (4) is
solved. The desired mode of the waveguide is selected, for
example the complex propagation constant with the largest
real part to obtain the dominant mode, and df?/&~ is
calculated. A new value of ●R is then chosen and the process
repeated. The iteration stops when d~ / d~~ = O.

The optimization of CR can be performed on only one
eigenvalue at a time. It is possible that each eigenvalue
would require reoptimization of e~, a situation that would
require repeating the entire calculation for each IRW mode.
However, the optimization matches the field configuration of
the IRW and the expansion of HRW modes, so once
matched, they describe the same waveguide, and all modes
then have matched field configurations. Therefore, only one
optimization is required and all eigenvalues are available
with one calculation.

III. lMPLEMENTATION NOTES

The number of HRW modes included in the solution

directly determines the accuracy of the final result. Because

of the Fourier series nature of the method, an accurate

solution will require at least a few half-cycles of the highest-

order HRW mode over the smallest feature in the IRW. This

concept applies independently to the x and y directions.

Given the number of half-cycles desired, ~, the program can

automatically determine the number of modes to include in

each direction, and N would typically remain fixed for all

problems but could be adjusted to check convergence. The

user need not necessarily know the total number of modes
utilized in the solution.

The implementation in this work allocates the TM~. and
~~q modes such that m + n G L and p + q g L -2, where
L N determined by N. This choice retains completeness as

8.2mm
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Fig. 2. Image line for numerical examples.

L a ~ while emphasizing lower-order over higher-order

modes in minimizing the total number of modes.
Structures with symmetry do not need the complete set of

HRW modes, so dramatic improvements in computation
speed can be achieved by deleting the appropriate modes
when constructing the eigenvalue problem (3) and (4). The
program need only eliminate even or odd values of m, n, p,
and/or q depending on the symmetry and direction in-
volved.

Finally, the integrations involved in (3) and (4) can be time
consuming despite their calculation in closed form. However,
they depend only on the IRW structure dimensions and
material parameters, so they can be precomputed and stored
to achieve considerable time savings. Other opportunities for
precomputation exist.

IV. RESULTS AND DISCUSSION

This section details numerical studies to prove the conver-
gence, numerical stability, and accuracy of the Rayleigh–Ritz
technique outlined in Section II. Since dominant and higher
order modes are needed, symmetry is not exploited so that
all modes are available with one calculation.

Convergence of the method is theoretically guaranteed. To
show that convergence is actually achieved, the image line
structure in Fig. 2 is computed to varying degrees of preci-
sion for two different materials, e, = 2.22 and e = 9.8, with
tan 8 = 10-8 at B = 2.00, where B = f4h~~/c0 is the

normalized frequency based on the dielectric constant and
height, h, of the strip. The results for the normalized propa-
gation constants, /3/f?O, of the first three modes are shown
in Fig. 3. Table I shows the actual number of modes used,
which also defines the order of the eigenvalue problem (3)
and (4).

The results show that the method rapidly converges and
that excellent numerical stability is achieved. Convergence
occurs about N = 1.5 independent of the image line material,
behavior in contrast with some previously reported depen-
dencies [11]–[14], where convergence slows considerably for
higher permittivity materials, Conceptually, dependence on
the permittivity is not expected as it is the step in permittivity
that requires modeling, not the step height; this can also be
seen in the Fourier series expansion of a rectangular pulse,
where the pulse height enters only as a scaling constant. It is
interesting to note that once convergence is achieved (N=
1.5), increasing the number of modes by a factor of almost 4
(N= 3) does not introduce numerical instability. Since highly
convergent and stable results with a reasonable matrix size
are achieved with N = 3, all computed results below use
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Fig. 3. Results of image line convergence study

TABLE I
TOTAL NUMBER OF MODES FOR FIG. 3

N No. HRW Modes

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.50
3.00

3
5

13
17

29
35

51
79

113

10
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,.’
/
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Fig, 4. Image line propagation constant comparison.

N =3. This matrix size allows all data to be computed on a
personal computer.

To prove the accuracy of the method for the propagation
constant, the dispersion curve for the image line of Fig. 2
with Cr = 2.22 and tan 8 = 10 – 8 is presented,The resultsare
shown in Fig. 4, where data from [17] are shown for compari-
son. The structure in [17] is open on one side, so the
low-frequency behavior is necessarily different. At high fre-
quencies, the results agree to within graphical accuracy of
the [17] data. As frequeney decreases, some discrepancy
builds, reflecting the influence on the growing exponential
tail of the extra sidewall in this work, The sidewall com-
presses the field, driving up the propagation constant, as

tan6=0

o c d a

Fig. 5. Notation for perturbational loss calculation.

TABLE II
DIELECTRIC Loss COMPARISON AT 15 GHz

ad, dB/m P/ho

tan 8 This Work (6) This Work ~1 – (Ao/2a)2

IO-5 0.007088 0.007088 0.7882 0.7882
10-4 0.07088 0.07088 0.7882 0.7882
10-3 0.7088 0.7088 0.7882 0.7882
IO-2 7.084 7.088 0.7882 0.7882
0.1 70.44 70.88 0.7887 0.7882
0.2154 150.1 152.7 0.7909 0.7882
0.4641 312.6 329.0 0.7997
1

0.7882
611.8 708.8 0.8298 0.7882

reflected in the data. At still lower frequencies, the compari-
son between the open and closed waveguides loses validity.
The effect of the sidewall on the EH II and HE21 modes is
similar because of their similar field structures. The EH ~1
has a more complex field structure and larger evanescent
tails, so the effect of the sidewall is more pronounced at all
frequencies. Note that no spurious modes are observed,
supporting the theoretical result.

An attenuation constant comparison is made using the
image line structure of Fig. 2 with ●, = 1 with varying loss
tangents at 15 GHz. Choosing unity dielectric constant al-
lows for comparison with a closed-form perturbational solu-
tion. The dielectric attenuation is given by the well-known
perturbational formula

Jo .5tan~l E12ds
ad = (5)

2Re~EXH*. uzds

where ad is the dielectric attenuation constant in Np\m.
Using the dimension notation from Fig. 5 and the fields of
the empty waveguide TE,0 mode (a> b), (5) yields

(6)

The nonperturbational results using the modified
Rayleigh–Ritz method are compared with the perturbational
results from (6) in Table II. The results show the modified
Rayleigh-Ritz technique to be very actwrate in 10SScalcula-
tions. The deviations at higher loss tangents demonstrate the
breakdown of the perturbational assumptions and the result-
ing loss of accuracy in (5).
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Fig. 6. Example image line field component plots.

Field plots are easily generated. An example set is shown
in Fig. 6 for the dominant mode of the image line structure
of Fig. 2 with E,= 2.22 and tan 8 = 10–8 at B = 2.25 with
N = 4 (199 HRW modes). At the time and distance given by
~ t – 13z= O, the real part of each component is normalized
to its own peak value and then plotted as 10% contours. For
the electric and magnetic fields separately, the ratio of the

peak value in each component to the overall peak value is
given. The relationship between all components is then fixed
by the ratio of the overall peak electric and magnetic values,
which is 257.10 for Fig. 6. A small amount of noise, occurs in
the plots because of the two-dimensional Gibbs phenomena,
as indicated by the extra O contours. The weaker field
components exhibit more noise since they are not as accu-
rately modeled.

The field plots show strong localization of the fields to the
dielectric strip and EY and H, component dominance. The
other components primarily exist near the dielectric-air in-
terface, especially the corners, to satisfy the boundary condi-
tions. The dominance of the transverse components is such
that the mode is almost TEM. The ratio of peak electric to
magnetic field values of 257.10 corresponds closely to the
252.85 C! intrinsic impedance of the dielectric material.

Convergence studies are usually required to determine if
the PEC box is located at a sufficient distance from the guide
to neglect its effect. These studies are usually time consum-
ing to perform because of the large matrices required. A
color-based graphics package has been developed that avoids
the computation of contour plots in plotting the fields. The
fields can be quickly computed and displayed, allowing for a
visual check on the effect of the PEC walls. Coupling to the
walls is readily observable and then avoided with a larger
box. Since a visual check determines where coupling occurs,
only the wall causing the coupling need be moved, allowing
for minimization of the wall coupling with a box of minimum
size,

V. CONCLUSION

This paper presents an alternative to the finite-element
method for the general dielectric waveguide analysis prob-
lem. The method is based on the classical Rayleigh-Ritz
method with an additional well-defined optimization, and it
represents the first full-scale Rayleigh–Ritz implementation
for waveguide analysis. Numerical results show that the
method is fast, accurate, and extremely stable and well-
behaved. In addition, the method is general, easily and
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compactly implemented, and requires no user input beyond
structure definition. The method appears to be highly suit-
able as the basis of a CAD system.

APPENDIx

The integrals appearing in (3) and (4) are given below. As
written, they apply to an arbitrary isotropic IRW. For rectan-
gular homogeneous subregions, the integrals are broken into
sums of integrals over the subregions, with each integral
available in closed form. The material filling the HRW is
described with •~ and p~, where •~ may be complex. For
this work, p = p~ = FO:

IInmrs= j~,rmrs(fwkds

u w%.m,,ds
I 2mnrs = B ——

s 2mnrs (3X dx

//

d(pmn i?~r,
I 3mnrs = B— — ds

s 3mnrs ay ay

//
abmn a$pq d$

I 4mnpq = B ——
s 4m”pq dX ay

j]
‘~mn ‘*pq ds

I 5mnpq = B ——
s 5mnpq ay dx

u ‘wpq wt. d~
z-Jpqtu = B ——

s 7pqt” 8X ax

U
W)q wt. d~

I 8pqtu = ‘8pqtu ~y ~y
s

//
wpqwt.ds

I 13pqtu =B ——13pqtu s JY ay

JY
wpq wt. ds

I 14pqtu =B ——14pqtu
s ax ax

where

@mn(x, y)=sin (~x)sin(~y),

m=l,2,3” ””; ?t=~,2!,3,. . .

+Jxy)=cos($x)cos(w
p=o,l,2, ””. ,q=o,l,2. ..; p= q#()

B lmnrs =@(ER–c)

B 2mnrs A + jA7mn= aeA1mn A1r~ + ~~A7mn 7VS

B A + jA7mn— (.0eA3mn A3r~ + ~~A5mn Srs
3mnrs —

B 4mnpq = 2&w A1mnA2pq +wJA7mnA8pq + Wm. + jA6pq

B 5mnpq = 2ueA3m~A4pq +2~PAs~nAbpq – jAl~~ – jAbpq

B 6pqtu=d~R -~)

B 7pqtu
= 0MA4pq A4tU + ~PA,pq A6tu + jA 2pq

%@. A +M2pq= mcA2pq A2tU + ~PAspq 8tu

B gmn,~ = A1mnA7r,

B 10mnrs = – A3mnA5r~

B 13pqt u = A2pqAStu

B 14pqtu = – A4pqA6tu

with

A =A3mn=
– jl%

lmn
k; – /5:n

A 2pq = – A4pq = – ‘tip;
k; – Bpq

A = A8pq =
– jfipq

,Pq
k; – /3;q

and

k;= (i)2CR/.LR
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